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Letters
A practical enantioselective synthesis of massoialactone via
hydrolytic kinetic resolution
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Abstract—An efficient enantioselective synthesis of (R)- and (S)-massoialactone has been achieved. The key steps are the hydrolytic
kinetic resolution of a racemic epoxyheptane with (R,R)-(salen)–CoIIIOAc complex and ring-closing metathesis of homoallylic
alcohol derived acrylate esters using Grubb�s catalyst.
� 2003 Elsevier Ltd. All rights reserved.
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Figure 1.
d-Lactones possessing alkyl side chains have attracted
much attention from synthetic and medicinal chemists
due to their biological activity. One such compound is
massoialactone,1;2 isolated for the first time from the
bark of Cryptocarya massoia, by Abe3 in 1937. It has
been used for many centuries as a constituent of native
medicines. It is a powerful skin irritant and produces
systolic standstill in frog heart muscles.1 This lactone
has also been isolated from cane molasses4 and jasmine
blossoms5 as a flavour substance. Later it was isolated
from the secretion of the two species of Formicin ants6

of the genus Componotus, collected in Western Austra-
lia.

Various methods for the synthesis of massoialactone
(Fig. 1) have been described.2;7 The asymmetric syn-
theses reported in the literature for the natural 1a and
unnatural 1b isomers of massoialactone either utilize the
chiral pool as a starting material8 or the chromato-
graphic resolution of the diastereomeric derivative of
the lactone precursor.9 A recent report describes the
synthesis via asymmetric allylboration of an aldehyde
with b-allyldiisopinocampheylborane.10 As part of our
research program aimed at developing enantioselective
syntheses of naturally occurring lactones11 and amino
alcohols12 we recently reported the synthesis of (S)-
massoialactone using the Sharpless asymmetric dihydr-
oxylation approach.11a However the enantiomeric purity
of the diol obtained was not high due to the terminal
olefin employed as a substrate in the dihydroxylation
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step. Herein we report a new and highly enantioselective
synthesis of (R)- and (S)-massoialactone using Jacob-
sen�s hydrolytic kinetic resolution (HKR) of a terminal
epoxide.13 The HKR method uses readily accessible
cobalt-based chiral salen complex 2 (Fig. 2) as catalyst
and water as the only reagent to resolve a racemic
epoxide into the enantomerically enriched epoxide and
diol in high enantiomeric excess. These advantages have
made it a very attractive asymmetric synthetic tool.
(R,R )-SalenCoIIIOAc complex  2

Figure 2.
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Scheme 3. Reagents and conditions: (i) SOCl2, Et3N, CH2Cl2, 0 �C,
20min, 99%; (ii) RuCl3, NaIO4, CCl4–MeCN–H2O; 2:2:3, 0 �C, 2 h,
100%; (iii) LiCBCH–ethylene diamine, DMSO, 0 �C to rt, 10 h, 80%;

(iv) H2, Pd/BaSO4, quinoline, benzene, 1 bar, rt, 0.5 h, 86%; (v) acryloyl

chloride, Et3N, CH2Cl2, 0 �C, 5–6h, 84%; (vi) (PCy3)2Ru(Cl)2@CH–Ph

(20mol%), CH2Cl2, Ti(i-PrO)4, reflux, 12 h, 85%.
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Scheme 1. Reagents and conditions: (i) m-CPBA, CH2Cl2, 0 �C to rt,

10 h, 92%; (ii) R,R-salen–Co-(OAc) (0.5mol%), distd H2O

(0.55 equiv), 0 �C, 16 h, (45% for 5, 43% for 6).
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The racemic epoxide 4, a substrate for HKR was pre-
pared from commercially available 1-heptene 3 using
m-CPBA. The HKR was performed on 4 with (R,R)-
salen–Co-(OAc) complex 2 (0.5mol%) and water
(0.55 equiv) to give the R-epoxide 5 in 45% yield
with >99% ee,14 ½a�25D +9.6 (c 1, CHCl3) [lit.

15 +9.8 (c 1,
CHCl3)] and the S-diol 6 in 43% yield with 99.5% ee,16

½a�25D )15.9 (c 1.67, EtOH) [lit.8a ½a�22D )15.2 (c 1.67,
EtOH)] (Scheme 1).

The synthesis of (R)-massoialactone 1a started from the
enantiomerically enriched epoxide 5 as illustrated in
Scheme 2. Thus opening of 5 with an excess of lithium
acetylide followed by partial hydrogenation of the
resultant acetylene 7 with Lindlar�s catalyst furnished
the homoallylic alcohol 8. Compound 8 was esterified
with acryloyl chloride in the presence of triethylamine to
afford 9 in 89% yield. The subsequent ring-closing
metathesis17 in dichloromethane under reflux in high
dilution conditions using the first generation Grubbs�s
catalyst, bis(tricyclohexylphosphine)benzylidene ruthe-
nium(IV) dichloride and catalytic amount of Ti(i-PrO)4
afforded (R)-massoialactone in 84% yield, ½a�25D )115.2 (c
1, CHCl3) [lit.10 ½a�29D )113.6 (c 1.36, CHCl3)]. The
physical and spectroscopic data were in full agreement
with the literature.8c

Scheme 3 summarizes the synthesis of (S)-massoialac-
tone 1b from the diol 6. Thus treatment of 6 with thionyl
chloride in the presence of triethylamine gave the cyclic
sulfite 10, which was further oxidized using NaIO4 and a
catalytic amount of ruthenium trichloride to furnish the
corresponding cyclic sulfate 11 in essentially quantita-
tive yield.18 The essential feature of our synthetic strat-
egy shown in Scheme 3 was based on the presumption
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Scheme 2. Reagents and conditions: (i) LiCBCH–ethylene diamine,

DMSO, rt, 12 h, 86%; (ii) H2, Pd/BaSO4, quinoline, benzene, 1 bar, rt,

0.5 h, 92%; (iii) acryloyl chloride, Et3N, CH2Cl2, 0 �C, 5–6 h, 89%; (iv)

(PCy3)2 Ru(Cl)2@CH–Ph (20mol%), CH2Cl2, Ti(i-PrO)4, reflux, 12 h,

84%.
that the nucleophilic opening of the cyclic sulfate 11
would occur in a regioselective manner at the terminal
carbon. Indeed the cyclic sulfate 11 on treatment with
lithium acetylide furnished the desired alcohol 12, which
on hydrogenation followed by ring-closing metathesis
afforded the target molecule 1b, ½a�25D +110.1 (c 2.0,
CHCl3) [lit.

9 ½a�22:6D +109.6 (c 2, CHCl3)]. The physical
and spectroscopic data were in full agreement with the
literature.8c

In conclusion we have demonstrated that the enantio-
selective synthesis of both the isomers of massoialactone
can be accomplished using hydrolytic kinetic resolution
of a racemic epoxide and ring-closing metathesis. The
synthetic strategy described has significant potential for
further extension to a variety of other 6-substituted
chiral lactones, which serve as important synthons for
several naturally occurring and biologically active
molecules. Currently studies are in progress in this
direction.
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